Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.803
Filtrar
1.
Zhonghua Yi Xue Za Zhi ; 104(13): 991-995, 2024 Apr 02.
Artículo en Chino | MEDLINE | ID: mdl-38561294

RESUMEN

The spinal cord trauma induced by production and accidents in the current society has the characteristics of complicated injuries and difficult treatment, which is an important cause of death and disability of the wounded. With the development of computer technology, artificial intelligence (AI) has been widely used in the field of trauma treatment. The application of AI to assist pre-hospital rescue personnel in rapid and accurate identification and emergency treatment of fatal concomitant injuries, the examination of spinal cord function, spinal stabilization, the transport and evacuation of wounded, and supportive treatment can improve the efficiency of spinal cord trauma treatment and reduce the rate of death and disability.


Asunto(s)
Servicios Médicos de Urgencia , Traumatismos de la Médula Espinal , Humanos , Inteligencia Artificial , Traumatismos de la Médula Espinal/terapia
2.
Nat Commun ; 15(1): 2201, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561341

RESUMEN

Intrathecal delivery of autologous culture-expanded adipose tissue-derived mesenchymal stem cells (AD-MSC) could be utilized to treat traumatic spinal cord injury (SCI). This Phase I trial (ClinicalTrials.gov: NCT03308565) included 10 patients with American Spinal Injury Association Impairment Scale (AIS) grade A or B at the time of injury. The study's primary outcome was the safety profile, as captured by the nature and frequency of adverse events. Secondary outcomes included changes in sensory and motor scores, imaging, cerebrospinal fluid markers, and somatosensory evoked potentials. The manufacturing and delivery of the regimen were successful for all patients. The most commonly reported adverse events were headache and musculoskeletal pain, observed in 8 patients. No serious AEs were observed. At final follow-up, seven patients demonstrated improvement in AIS grade from the time of injection. In conclusion, the study met the primary endpoint, demonstrating that AD-MSC harvesting and administration were well-tolerated in patients with traumatic SCI.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Traumatismos Vertebrales , Humanos , Trasplante Autólogo/efectos adversos , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/complicaciones , Traumatismos Vertebrales/complicaciones , Resultado del Tratamiento
3.
Cells ; 13(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38607020

RESUMEN

Spinal cord injury (SCI) leads to significant functional impairments below the level of the injury, and astrocytes play a crucial role in the pathophysiology of SCI. Astrocytes undergo changes and form a glial scar after SCI, which has traditionally been viewed as a barrier to axonal regeneration and functional recovery. Astrocytes activate intracellular signaling pathways, including nuclear factor κB (NF-κB) and Janus kinase-signal transducers and activators of transcription (JAK/STAT), in response to external stimuli. NF-κB and STAT3 are transcription factors that play a pivotal role in initiating gene expression related to astrogliosis. The JAK/STAT signaling pathway is essential for managing secondary damage and facilitating recovery processes post-SCI: inflammation, glial scar formation, and astrocyte survival. NF-κB activation in astrocytes leads to the production of pro-inflammatory factors by astrocytes. NF-κB and STAT3 signaling pathways are interconnected: NF-κB activation in astrocytes leads to the release of interleukin-6 (IL-6), which interacts with the IL-6 receptor and initiates STAT3 activation. By modulating astrocyte responses, these pathways offer promising avenues for enhancing recovery outcomes, illustrating the crucial need for further investigation into their mechanisms and therapeutic applications in SCI treatment.


Asunto(s)
FN-kappa B , Traumatismos de la Médula Espinal , Humanos , FN-kappa B/metabolismo , Astrocitos/metabolismo , Enfermedades Neuroinflamatorias , Quinasas Janus/metabolismo , Gliosis/complicaciones , Transducción de Señal/fisiología , Traumatismos de la Médula Espinal/terapia
4.
PLoS One ; 19(4): e0301430, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578715

RESUMEN

BACKGROUND: SCI is a time-sensitive debilitating neurological condition without treatment options. Although the central nervous system is not programmed for effective endogenous repairs or regeneration, neuroplasticity partially compensates for the dysfunction consequences of SCI. OBJECTIVE AND HYPOTHESIS: The purpose of our study is to investigate whether early induction of hypothermia impacts neuronal tissue compensatory mechanisms. Our hypothesis is that although neuroplasticity happens within the neuropathways, both above (forelimbs) and below (hindlimbs) the site of spinal cord injury (SCI), hypothermia further influences the upper limbs' SSEP signals, even when the SCI is mid-thoracic. STUDY DESIGN: A total of 30 male and female adult rats are randomly assigned to four groups (n = 7): sham group, control group undergoing only laminectomy, injury group with normothermia (37°C), and injury group with hypothermia (32°C +/-0.5°C). METHODS: The NYU-Impactor is used to induce mid-thoracic (T8) moderate (12.5 mm) midline contusive injury in rats. Somatosensory evoked potential (SSEP) is an objective and non-invasive procedure to assess the functionality of selective neuropathways. SSEP monitoring of baseline, and on days 4 and 7 post-SCI are performed. RESULTS: Statistical analysis shows that there are significant differences between the SSEP signal amplitudes recorded when stimulating either forelimb in the group of rats with normothermia compared to the rats treated with 2h of hypothermia on day 4 (left forelimb, p = 0.0417 and right forelimb, p = 0.0012) and on day 7 (left forelimb, p = 0.0332 and right forelimb, p = 0.0133) post-SCI. CONCLUSION: Our results show that the forelimbs SSEP signals from the two groups of injuries with and without hypothermia have statistically significant differences on days 4 and 7. This indicates the neuroprotective effect of early hypothermia and its influences on stimulating further the neuroplasticity within the upper limbs neural network post-SCI. Timely detection of neuroplasticity and identifying the endogenous and exogenous factors have clinical applications in planning a more effective rehabilitation and functional electrical stimulation (FES) interventions in SCI patients.


Asunto(s)
Hipotermia , Traumatismos de la Médula Espinal , Humanos , Ratas , Masculino , Femenino , Animales , Traumatismos de la Médula Espinal/terapia , Potenciales Evocados Somatosensoriales/fisiología , Sistema Nervioso Central , Plasticidad Neuronal/fisiología , Médula Espinal
5.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612590

RESUMEN

Spinal cord injury (SCI) presents a complex challenge in neurorehabilitation, demanding innovative therapeutic strategies to facilitate functional recovery. This study investigates the effects of treadmill training on SCI recovery, emphasizing motor function enhancement, neural tissue preservation, and axonal growth. Our research, conducted on a rat model, demonstrates that controlled treadmill exercises significantly improve motor functions post-SCI, as evidenced by improved scores on the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and enhanced electromyography readings. Notably, the training facilitates the preservation of spinal cord tissue, effectively reducing secondary damage and promoting the maintenance of neural fibers in the injured area. A key finding is the significant stimulation of axonal growth around the injury epicenter in trained rats, marked by increased growth-associated protein 43 (GAP43) expression. Despite these advancements, the study notes a limited impact of treadmill training on motoneuron adaptation and highlights minimal changes in the astrocyte and neuron-glial antigen 2 (NG2) response. This suggests that, while treadmill training is instrumental in functional improvements post-SCI, its influence on certain neural cell types and glial populations is constrained.


Asunto(s)
Astrocitos , Traumatismos de la Médula Espinal , Animales , Ratas , Humanos , Neuroglía , Electromiografía , Neuronas Motoras , Traumatismos de la Médula Espinal/terapia , Axones
6.
Urol Clin North Am ; 51(2): 277-284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609199

RESUMEN

Individual and social factors are important for clinical decision-making in patients with neurogenic bladder secondary to spinal cord injury (SCI). These factors include the availability of caregivers, social infrastructure, and personal preferences, which all can drive bladder management decisions. These elements can be overlooked in clinical decision-making; therefore, there is a need to elicit and prioritize patient preferences and values into neurogenic bladder care to facilitate personalized bladder management choices. For the purposes of this article, we review the role of guideline-based care and shared decision-making in the SCI population with neurogenic lower urinary tract dysfunction.


Asunto(s)
Traumatismos de la Médula Espinal , Vejiga Urinaria Neurogénica , Humanos , Vejiga Urinaria , Vejiga Urinaria Neurogénica/etiología , Vejiga Urinaria Neurogénica/terapia , Prioridad del Paciente , Toma de Decisiones Clínicas , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia
7.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 480-486, 2024 Apr 15.
Artículo en Chino | MEDLINE | ID: mdl-38632070

RESUMEN

Objective: To explore the therapeutic effect of basic fibroblast growth factor (bFGF) on spinal cord injury (SCI) in rats and the influence of Notch/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Methods: A total of 40 10-week-old male Sprague Dawley (SD) rats were selected to establish T 10-segment SCI model by a free falling object. Among them, 32 successful models were randomly divided into model group and bFGF group, with 16 in each group. Another 16 SD rats were selected as sham-operation group, with only T 10 processes, dura mater, and spinal cord exposed. After modeling, the rats in bFGF group were intraperitoneally injected with 100 µg/kg bFGF (once a day for 28 days), and the rats in model group and sham-operation group were injected with normal saline in the same way. The survival of rats in each group were observed after modeling. Basso-Beattie-Bresnahan (BBB) scores were performed before modeling and at immediate, 14 days, and 28 days after modeling to evaluate the functional recovery of hind limbs. Then, the spinal cord tissue at the site of injury was taken at 28 days and stained with HE, Nissl, and propidium iodide (PI) to observe the pathological changes, neuronal survival (number of Nissl bodies) and apoptosis (number of PI red stained cells) of the spinal cord tissue; immunohistochemical staining and ELISA were used to detect the levels of astrocyte activation markers [glial fibrillary acidic protein (GFAP)] and inflammatory factors [interleukin 1ß (IL-1ß), tumor necrosis factor α (TNF-α), interferon γ (IFN-γ)] in tissues, respectively. Western blot was used to detect the expressions of Notch/STAT3 signaling pathway related proteins [Notch, STAT3, phosphoryl-STAT3 (p-STAT3), bone morphogenetic protein 2 (BMP-2)] in tissues. Results: All rats survived until the experiment was completed. At immediate after modeling, the BBB scores in model group and bFGF group significantly decreased when compared to sham-operation group ( P<0.05). At 14 and 28 days after modeling, the BBB scores in model group significantly decreased when compared to sham-operation group ( P<0.05); the bFGF group showed an increase compared to model group ( P<0.05). Compared with before modeling, the BBB scores of model group and bFGF group decreased at immediate after modeling, and gradually increased at 14 and 28 days, the differences between different time points were significant ( P<0.05). The structure of spinal cord tissue in sham-operation group was normal; in model group, there were more necrotic lesions in the spinal cord tissue and fewer Nissl bodies with normal structures; the number of necrotic lesions in the spinal cord tissue of the bFGF group significantly reduced compared to the model group, and some normally structured Nissl bodies were visible. Compared with sham-operation group, the number of Nissl bodies in spinal cord tissue significantly decreased, the number of PI red stained cells, GFAP, IL-1ß, TNF-α, IFN-γ, Notch, p-STAT3 /STAT3, BMP-2 protein expression levels significantly increased in model group ( P<0.05). The above indexes in bFGF group significantly improved when compared with model group ( P<0.05). Conclusion: bFGF can improve motor function and pathological injury repair of spinal cord tissue in SCI rats, improve neuronal survival, and inhibit neuronal apoptosis, excessive activation of astrocytes in spinal cord tissue and inflammatory response, the mechanism of which may be related to the decreased activity of Notch/STAT3 signaling pathway.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Traumatismos de la Médula Espinal , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/farmacología , Factor de Transcripción STAT3/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Traumatismos de la Médula Espinal/terapia , Médula Espinal/metabolismo , Transducción de Señal
9.
Mol Biol Rep ; 51(1): 570, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658405

RESUMEN

INTRODUCTION: Spinal cord injury (SCI) leads to significant destruction of nerve tissue, causing the degeneration of axons and the formation of cystic cavities. This study aimed to examine the characteristics of human umbilical cord-derived mesenchymal stem cells (HUCMSCs) cultured in a serum-free conditioned medium (CM) and assess their effectiveness in a well-established hemitransection SCI model. MATERIALS AND METHODS: In this study, HUCMSCs cultured medium was collected and characterized by measuring IL-10 and identifying proteomics using mass spectroscopy. This collected serum-free CM was further used in the experiments to culture and characterize the HUMSCs. Later, neuronal cells derived from CM-enriched HUCMSC were tested sequentially using an injectable caffeic acid-bioconjugated gelatin (CBG), which was further transplanted in a hemitransection SCI model. In vitro, characterization of CM-enriched HUCMSCs and differentiated neuronal cells was performed using flow cytometry, immunofluorescence, electron microscopy, and post-transplant analysis using immunohistology analysis, qPCR, in vivo bioluminescence imaging, and behavioral analysis using an infrared actimeter. RESULTS: The cells that were cultured in the conditioned media produced a pro-inflammatory cytokine called IL-10. Upon examining the secretome of the conditioned media, the Kruppel-like family of KRAB and zinc-finger proteins (C2H2 and C4) were found to be activated. Transcriptome analysis also revealed an increased expression of ELK-1, HOXD8, OTX2, YY1, STAT1, ETV7, and PATZ1 in the conditioned media. Furthermore, the expression of Human Stem-101 confirmed proliferation during the first 3 weeks after transplantation, along with the migration of CBG-UCNSC cells within the transplanted area. The gene analysis showed increased expression of Nestin, NeuN, Calb-2, Msi1, and Msi2. The group that received CBG-UCNSC therapy showed a smooth recovery by the end of week 2, with most rats regaining their walking abilities similar to those before the spinal cord injury by week 5. CONCLUSIONS: In conclusion, the CBG-UCNSC method effectively preserved the integrity of the transplanted neuronal-like cells and improved locomotor function. Thus, CM-enriched cells can potentially reduce biosafety risks associated with animal content, making them a promising option for clinical applications in treating spinal cord injuries.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Transcriptoma , Cordón Umbilical , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/genética , Células Madre Mesenquimatosas/metabolismo , Medios de Cultivo Condicionados/farmacología , Cordón Umbilical/citología , Cordón Umbilical/metabolismo , Humanos , Animales , Trasplante de Células Madre Mesenquimatosas/métodos , Transcriptoma/genética , Ratas , Secretoma/metabolismo , Diferenciación Celular , Neuronas/metabolismo , Modelos Animales de Enfermedad , Interleucina-10/genética , Interleucina-10/metabolismo , Células Cultivadas , Proteómica/métodos
10.
Stem Cell Res Ther ; 15(1): 114, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650015

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is an intractable neurological disease in which functions cannot be permanently restored due to nerve damage. Stem cell therapy is a promising strategy for neuroregeneration after SCI. However, experimental evidence of its therapeutic effect in SCI is lacking. This study aimed to investigate the efficacy of transplanted cells using stepwise combined cell therapy with human mesenchymal stem cells (hMSC) and induced pluripotent stem cell (iPSC)-derived motor neuron progenitor cells (iMNP) in a rat model of SCI. METHODS: A contusive SCI model was developed in Sprague-Dawley rats using multicenter animal spinal cord injury study (MASCIS) impactor. Three protocols were designed and conducted as follows: (Subtopic 1) chronic SCI + iMNP, (Subtopic 2) acute SCI + multiple hMSC injections, and (Main topic) chronic SCI + stepwise combined cell therapy using multiple preemptive hMSC and iMNP. Neurite outgrowth was induced by coculturing hMSC and iPSC-derived motor neuron (iMN) on both two-dimensional (2D) and three-dimensional (3D) spheroid platforms during mature iMN differentiation in vitro. RESULTS: Stepwise combined cell therapy promoted mature motor neuron differentiation and axonal regeneration at the lesional site. In addition, stepwise combined cell therapy improved behavioral recovery and was more effective than single cell therapy alone. In vitro results showed that hMSC and iMN act synergistically and play a critical role in the induction of neurite outgrowth during iMN differentiation and maturation. CONCLUSIONS: Our findings show that stepwise combined cell therapy can induce alterations in the microenvironment for effective cell therapy in SCI. The in vitro results suggest that co-culturing hMSC and iMN can synergistically promote induction of MN neurite outgrowth.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Neuronas Motoras , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/terapia , Animales , Células Madre Pluripotentes Inducidas/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Neuronas Motoras/citología , Ratas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Humanos , Modelos Animales de Enfermedad , Regeneración Nerviosa
12.
Biofabrication ; 16(3)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38569491

RESUMEN

Regenerative healing of spinal cord injury (SCI) poses an ongoing medical challenge by causing persistent neurological impairment and a significant socioeconomic burden. The complexity of spinal cord tissue presents hurdles to successful regeneration following injury, due to the difficulty of forming a biomimetic structure that faithfully replicates native tissue using conventional tissue engineering scaffolds. 3D bioprinting is a rapidly evolving technology with unmatched potential to create 3D biological tissues with complicated and hierarchical structure and composition. With the addition of biological additives such as cells and biomolecules, 3D bioprinting can fabricate preclinical implants, tissue or organ-like constructs, andin vitromodels through precise control over the deposition of biomaterials and other building blocks. This review highlights the characteristics and advantages of 3D bioprinting for scaffold fabrication to enable SCI repair, including bottom-up manufacturing, mechanical customization, and spatial heterogeneity. This review also critically discusses the impact of various fabrication parameters on the efficacy of spinal cord repair using 3D bioprinted scaffolds, including the choice of printing method, scaffold shape, biomaterials, and biological supplements such as cells and growth factors. High-quality preclinical studies are required to accelerate the translation of 3D bioprinting into clinical practice for spinal cord repair. Meanwhile, other technological advances will continue to improve the regenerative capability of bioprinted scaffolds, such as the incorporation of nanoscale biological particles and the development of 4D printing.


Asunto(s)
Bioimpresión , Impresión Tridimensional , Traumatismos de la Médula Espinal , Andamios del Tejido , Traumatismos de la Médula Espinal/terapia , Bioimpresión/métodos , Humanos , Animales , Andamios del Tejido/química , Ingeniería de Tejidos , Materiales Biocompatibles/química
13.
Rev. esp. cir. ortop. traumatol. (Ed. impr.) ; 68(2): 151-158, Mar-Abr. 2024. ilus, graf, tab
Artículo en Español | IBECS | ID: ibc-231897

RESUMEN

Introducción: La lesión medular tipo SCIWORA es una entidad clínica con baja incidencia y alta repercusión funcional. El objetivo del estudio es la descripción epidemiológica de esta lesión y su evolución funcional con un seguimiento medio de 10 años. Material y métodos: Estudio analítico, longitudinal, de cohortes ambispectivo. Fueron evaluados 13 pacientes con el diagnóstico de SCIWORA en el periodo de estudio 2001-2022. Variables evaluadas: edad, sexo, días hasta la lesión medular, causa de lesión, imagen medular en la RM postraumatismo, nivel neurológico de lesión, ASIA ingreso/alta/5 años, SCIM III ingreso/alta/3 años, tipo de tratamiento empleado, empleo de terapia NASCIS III ingreso, tiempo de hospitalización, seguimiento medio. En octubre del 2022 fueron nuevamente evaluados en consultas externas mediante: cuestionario de discapacidad cervical (NDI)/Oswestry y cuestionario de calidad de vida validado en castellano para lesionados medulares (SV-QLI/SCI). Resultados: La mediana de edad fue de 4 años, 77% varones. El 54% de las lesiones corresponden a nivel cervical. El ASIA al ingreso fue del 31% A y del 31% C, nivel neurológico: C2 (22%) y T10 (15%), tráfico como causa de lesión (77%), SCIM III ingreso/alta: 28,5/42. La estancia media hospitalaria fue de 115 días. NDI: 11,6 y Oswestry: 15,3. Conclusión: El 77% de los SCIWORA se producen en menores de 8 años. Al año del alta hospitalaria un 31% de los pacientes fueron catalogados como ASIA D y a los 5 años el porcentaje se mantiene constante. No se encontraron diferencias significativas entre la causa de la lesión y tipo de alteración en RM (p = 0,872), ni entre la edad y el tipo de lesión medular objetivada en RM (p = 0,149).(AU)


Introduction: SCIWORA has a low incidence but a high functional repercussion. The aim of the present study was to characterize the epidemiology of this clinical-radiological condition and evaluate functional outcome with a mean of 10-years follow-up. Material and methods: Observational, longitudinal ambispective cohort study. Thirteen SCIWORA patients were admitted in the study period. Demographics, mechanism of injury, spinal cord MRI findings, neurological level of injury, time to SCI, neurological status (AIS) at admission/discharge/5 years, spinal cord independence measure (SCIM III) scale at admission and discharge, hospital length of stay and mean follow-up were recorded. On October 2022 patients were re-evaluated using NDI, Oswestry, and SV-QLI/SCI. Results: Median age was 4 years. The study population for this investigation was mostly men (77%). 54% of level of injury correspond to cervical spine. AIS at admission was A (31%) and C (31%). Neurological level of injury was C2 (22%) and T10 (15%). Motor vehicle-related injury was the most prevalent mechanism of injury (77%), SCIM III scale at admission and discharge: 28.5/42, hospital length of stay was 115 days. The NDI was 11.6, Oswestry: 15.3 and SV-QLI/SCI: 17. Conclusions: Seventy-seven percent of SCIWORA patients was detected under 8 years-old. At 1 year follow-up after discharge 31% patients were AIS grade D and with 5 years follow-up the percentage remain constant. No statistically significant differences in the mechanism of injury and MRI findings (P = 0.872), age and MRI spinal cord findings (P = 0.149) were found in SCIWORA patients.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Niño , Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/epidemiología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/terapia , Traumatología , Estudios Longitudinales , Estudios de Cohortes , Pediatría
14.
BMC Health Serv Res ; 24(1): 390, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549148

RESUMEN

BACKGROUND: Despite advances in managing secondary health complications after spinal cord injury (SCI), challenges remain in developing targeted community health strategies. In response, the SCI Health Maintenance Tool (SCI-HMT) was developed between 2018 and 2023 in NSW, Australia to support people with SCI and their general practitioners (GPs) to promote better community self-management. Successful implementation of innovations such as the SCI-HMT are determined by a range of contextual factors, including the perspectives of the innovation recipients for whom the innovation is intended to benefit, who are rarely included in the implementation process. During the digitizing of the booklet version of the SCI-HMT into a website and App, we used the Consolidated Framework for Implementation Research (CFIR) as a tool to guide collection and analysis of qualitative data from a range of innovation recipients to promote equity and to inform actionable findings designed to improve the implementation of the SCI-HMT. METHODS: Data from twenty-three innovation recipients in the development phase of the SCI-HMT were coded to the five CFIR domains to inform a semi-structured interview guide. This interview guide was used to prospectively explore the barriers and facilitators to planned implementation of the digital SCI-HMT with six health professionals and four people with SCI. A team including researchers and innovation recipients then interpreted these data to produce a reflective statement matched to each domain. Each reflective statement prefaced an actionable finding, defined as alterations that can be made to a program to improve its adoption into practice. RESULTS: Five reflective statements synthesizing all participant data and linked to an actionable finding to improve the implementation plan were created. Using the CFIR to guide our research emphasized how partnership is the key theme connecting all implementation facilitators, for example ensuring that the tone, scope, content and presentation of the SCI-HMT balanced the needs of innovation recipients alongside the provision of evidence-based clinical information. CONCLUSIONS: Understanding recipient perspectives is an essential contextual factor to consider when developing implementation strategies for healthcare innovations. The revised CFIR provided an effective, systematic method to understand, integrate and value recipient perspectives in the development of an implementation strategy for the SCI-HMT. TRIAL REGISTRATION: N/A.


Asunto(s)
Atención a la Salud , Traumatismos de la Médula Espinal , Humanos , Atención a la Salud/métodos , Personal de Salud , Traumatismos de la Médula Espinal/terapia , Australia , Investigación Cualitativa
15.
Tissue Eng Regen Med ; 21(3): 367-368, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38530570

RESUMEN

Inflammation can occur at the wound site, and immune cells are necessary to trigger wound healing and tissue regeneration after injury. It is partly initiated by the rapid migration of immune cells such as neutrophils, inflammatory monocytes, and macrophages after spinal cord injury (SCI). Secondary inflammation can increase the wound area; thus, the function of tissues below the injury levels. Monocytes can differentiate into macrophages, and the macrophage phenotype can change from a pro-inflammatory phenotype to an anti-inflammatory phenotype. Therefore, various studies on immunomodulation have been performed to suppress secondary inflammation upon nerve damage. This editorial commentary focuses on various therapeutic methods that modulate inflammation and promote functional regeneration after SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/terapia , Macrófagos , Inflamación , Monocitos , Neutrófilos
17.
J Mol Neurosci ; 74(2): 33, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536541

RESUMEN

Mesenchymal stem cell (MSC)-derived exosomes are considered as alternative to cell therapy in various diseases. This study aimed to understand the effect of bone marrow MSC-derived exosomes (BMMSC-exos) on spinal cord injury (SCI) and to unveil its regulatory mechanism on ferroptosis. Exosomes were isolated from BMMSCs and the uptake of BMMSCs-exos by PC12 cells was determined using PKH67 staining. The effect of BMMSC-exos on SCI in rats was studied by evaluating pathological changes of spinal cord tissues, inflammatory cytokines, and ferroptosis-related proteins. Transcriptome sequencing was used to discover the differential expressed genes (DEGs) between SCI rats and BMMSC-exos-treated rats followed by functional enrichment analyses. The effect of BMMSC-exos on ferroptosis and interleukin 17 (IL-17) pathway was evaluated in SCI rats and oxygen-glucose deprivation (OGD)-treated PC12 cells. The results showed that particles extracted from BMMSCs were exosomes that could be taken up by PC12 cells. BMMSC-exos treatment ameliorated injuries of spinal cord, suppressed the accumulation of Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS), with the elevated glutathione (GSH). Also, BMMSC-exos downregulated the expression of acyl-CoA synthetase long chain family member 4 (ACSL4) and upregulated glutathione peroxidase 4 (GPX4) and cysteine/glutamate antiporter xCT. A total of 110 DEGs were discovered and they were mainly enriched in IL-17 signaling pathway. Further in vitro and in vivo experiments showed that BMMSC-exos inactivated IL-17 pathway. BMMSC-exos promote the recovery of SCI and inhibit ferroptosis by inhibiting the IL-17 pathway, which provides BMMSC-exos as an alternative to the management of SCI.


Asunto(s)
Exosomas , Ferroptosis , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Animales , Ratas , Exosomas/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Células Madre Mesenquimatosas/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia
18.
Aging (Albany NY) ; 16: 5184-5206, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466640

RESUMEN

Spinal cord injury (SCI) results in a diverse range of disabilities and lacks effective treatment options. In recent years, exosomes derived from bone mesenchymal stem cells (BMSCs) have emerged as a promising cell-free therapeutic approach for treating ischemic brain injury and other inflammatory conditions. Macrophage/microglial pyroptosis has been identified as a contributing factor to neuroinflammation following SCI. The therapeutic potential of BMSC-derived exosomes in macrophage/microglia pyroptosis-induced neuroinflammation, however, has to be determined. Our findings demonstrate that exosomes derived from BMSCs can enhance motor function recovery and mitigate neuroinflammation subsequent to SCI by upregulating the expression of autophagy-related proteins and inhibiting the activation of NLRP3 inflammasomes in macrophage/microglia. Moreover, miR-21a-5p is markedly increased in BMSCs-derived exosomes, and knocking down miR-21a-5p in BMSCs-derived exosomes eliminates the beneficial effects of administration; upregulation of miR-21a-5p in BMSCs-derived exosomes enhances the beneficial effects of administration. Mechanistically, miR-21a-5p positively regulates the autophagy of macrophage/microglia by reducing PELI1 expression, which in turn inhibits their pyroptosis. This research provides novel evidence that exosomes derived from BMSCs can effectively suppress macrophage/microglia pyroptosis through the miR-21a-5p/PELI1 axis-mediated autophagy pathway, ultimately facilitating functional restoration following SCI. In particular, our constructed miR-21a-5p overexpression exosomes greatly improved the efficacy of BMSCs-derived exosomes in treating spinal cord injury. These results establish a foundation for the prospective utilization of exosomes derived from BMSCs as a novel biological intervention for spinal cord injury.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Traumatismos de la Médula Espinal , Humanos , Microglía/metabolismo , Piroptosis , Exosomas/metabolismo , Enfermedades Neuroinflamatorias , Estudios Prospectivos , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Macrófagos/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Autofagia , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
19.
Spinal Cord ; 62(4): 192-194, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499760

RESUMEN

In May 2023, a disclaimer posted on ClinicalTrials.gov dismisses accountability for the accuracy of registered information. For spinal cord injury, inconsistencies in intervention classification, phase designation, and lack of study protocols and results threaten the integrity of the database and put users at risk. An investment in what the resource should be rather than what it is not will give it the authority commensurate with the requirements for its regulatory use and informed decision-making for prospective trial participants.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Estudios Prospectivos , Traumatismos de la Médula Espinal/terapia , Responsabilidad Social
20.
J Orthop Surg Res ; 19(1): 184, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491537

RESUMEN

Spinal cord injury (SCI) is a serious traumatic disease of the central nervous system and leads to incomplete or complete loss of the body's autonomous motor and sensory functions, seriously endangering human health. Recently, exosomes have been proposed as important substances in cell-to-cell interactions. Mesenchymal stem cell (MSC)-derived exosomes exert good therapeutic effects and play a crucial role in neurological damage repair. However, the detailed mechanisms underlying their effects remain unknown. Herein, we found that compared to SCI rats, those subjected to umbilical cord MSC (UC-MSC)-derived exosomes injection showed an improved motor ability. Nevertheless, the transcriptome of BV2 microglia in different treatment groups indicated that the action pathway of exosomes might be the NF-κB/MAPK pathway. Additionally, exosomes from UC-MSCs could inhibit P38, JNK, ERK, and P65 phosphorylation in BV2 microglia and SCI rat tissues. Moreover, exosomes could inhibit apoptosis and inflammatory reaction and reactive oxygen species (ROS) production of BV2 microglia in vitro and in vivo. In conclusion, UC-MSCs-derived exosomes might protect SCI in rats by inhibiting inflammatory response via the NF-κB/MAPK signaling pathway, representing novel treatment targets or approaches for SCI.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Traumatismos de la Médula Espinal , Ratas , Humanos , Animales , FN-kappa B/metabolismo , Exosomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Cordón Umbilical/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...